
CORBAservices: Common Object Services Specification 3-1

Naming Service Specification 3

3.1 Service Description

3.1.1 Overview

A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a set
of name bindings in which each name is unique. Different names can be bound to an
object in the same or different contexts at the same time. There is no requirement,
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a naming
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph allows
more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution process.
Figure 3-1 shows an example of a naming graph.

3-2 CORBAservices: Common Object Services Specification

3

Figure3-1 A Naming Graph

3.1.2 Names

Many of the operations defined on a naming context take names as parameters. Names
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

< component1 ; component2 ; component3 >

indicates the sequences of components.

Note – The semicolon (;) characters are simply the notation used in this document and
are not intended to imply that names are sequences of characters separated by
semicolon.

A name component consists of two attributes: the identifier attribute and the kind
attribute. Both the identifier attribute and the kind attribute are represented as
IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code,
executable, postscript, or “ ” . The naming system does not interpret, assign, or manage

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2

Naming Service: v1.0 Service Description March 1995 3-3

3

these values in any way. Higher levels of software may make policies about the use
and management of these values. This feature addresses the needs of applications that
use syntactic naming conventions to distinguish related objects. For example Unix uses
suffixes such as .c and .o. Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transform foo.c
to foo.o).

The lack of name syntax is especially important when considering internationalization
issues. Software that does not depend on the syntactic conventions for names does not
have to be changed when it is localized for a natural language that has different
syntactic conventions — unlike software that does depend on the syntactic conventions
(which must be changed to adopt to new conventions).

To avoid issues of differing name syntax, the Naming Service always deals with names
in their structural form (that is, there are no canonical syntaxes or distinguished meta
characters). It is assumed that various programs and system services will map names
from the representation into the structural form in a manner that is convenient to them.

3.1.3 Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation from client code. Ideally, names themselves would
be OMG IDL objects; however, names must be lightweight entities that can be very
efficiently created and manipulated in memory and passed as parameters in requests by
value. In order to simplify name manipulation and provide representation
independence, names can be presented to programs through the names library. Note,
however, it is not necessary to use the names library to use the basic operations of the
naming service.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL. The names library supports two pseudo-IDL interfaces: the
LNameComponent interface and the LName interface. The LNameComponent interface
defines the get and set operations associated with name component identifier and
the kind attributes.The LName Interface includes operations for manipulating library
name and library name component pseudo objects and producing and translating a
structure that can be passed as a parameter to a normal object request.

3.1.4 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that differ
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise-
wide naming server such as DCE CDS. The Naming Service is used to construct large,
enterprise-wide naming graphs where NamingContexts model "directories" or "folders"
and other names identify "document" or "file" kinds of objects. In other words, the

3-4 CORBAservices: Common Object Services Specification

3

naming service is used as the backbone of an enterprise-wide filing system. In such a
system, non-object-based access to the naming service may well be as commonplace as
object-based access to the naming service. For example, the name of an object might
be presented to the DCE directory service as a null-terminated ASCII string such as
“/.../DME/nls/moa-1/ID-1”.

The Naming Service provides the principal mechanism through which most clients of
an ORB-based system locate objects that they intend to use (make requests of). Given
an initial naming context, clients navigate naming contexts retrieving lists of the names
bound to that context. In conjunction with properties and security services, clients look
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externally
visible characteristics with other services (a name service, a properties service, and so
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, groups
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used to
identify contexts that list the names of services that are available in the system (e.g.,
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role and
can have a less sophisticated implementation. In this model, naming contexts represent
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing service.

Given a handful of references to "root objects" obtained from the Naming Service, a
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such as
query services to navigate through large collections of objects. Also, objects in this
scheme rarely register "external characteristics" with another service - instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used to
provide both models of use at the same time. These two scenarios demonstrate how
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semantics
which determine how frameworks of application and facilities objects locate other
objects.

3.1.5 Design Principles

Several principles have driven the design of the Naming Service:

Naming Service: v1.0 Service Description March 1995 3-5

3

1. The design imparts no semantics or interpretation of the names themselves; this is
up to higher-level software. The naming service provides only a structural
convention for names, e.g. compound names.

2. The design supports distributed, heterogeneous implementation and administration
of names and name contexts.

3. Names are structures, not just character strings. A struct is necessary to avoid
encoding information syntactically in the name string (e.g., separating the human-
meaningful name and its type with a “.”, and the type and version with a “!”), which
is a bad idea with respect to the generality, extensibility, and internationalization of
the name service. The structure define includes a human-chosen string plus a kind
field.

4. Naming service clients need not be aware of the physical site of name servers in a
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on other
interfaces.

6. Name contexts of arbitrary and unknown implementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of the
above features contribute to making this possible.

8. The design does not address name security since there is currently no OMG security
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not address namespace administration. It is the responsibility of
higher-level software to administer the namespace.

3.1.6 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architecture document1 as follows:

• Naming standards: Encapsulation of existing naming standards and protocols is
allowed using naming contexts. Transparent encapsulation is made possible by the
design features outlined above.

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.

3-6 CORBAservices: Common Object Services Specification

3

• Federation of namespaces: The specification supports distributed federation of
namespaces; no assumptions are made about centralized or universal functions.
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root context,
and existing graphs may be joined at any point.

• Scope of names: Name contexts define name scope. Names must be unique within a
context. Objects may have multiple names, and may exist in multiple name
contexts. Name contexts may be named objects nested within another name context,
and cycles are permitted. The name itself is not a full-fledged ORB object, but does
support structure, so it may have multiple components. No requirements are placed
on naming conventions, in order to support a wide variety of conventions and
existing standards.

• Operations: The specification supports bind, unbind, lookup, and sequence
operations on a name context. It does not support a rename operation, because we
do not see how to implement this correctly in a distributed environment without
transactions.

3.2 The CosNaming Module

The CosNaming Module is a collection of interfaces that together define the naming
service. This module contains two interfaces:

• The NamingContext interface
• The BindingIterator interface

This section describes these interfaces and their operations in detail.

The CosNaming Module is shown in Figure 3-2. Note that Istring is a placeholder
for a future IDL internationalized string data type.

module CosNaming
{

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

Figure3-2 The CosNaming Module

Naming Service: v1.0 The CosNaming Module March 1995 3-7

3

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
 raises(NotEmpty);
void list (in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

Figure3-2 The CosNaming Module (Continued)

3-8 CORBAservices: Common Object Services Specification

3

The following sections describe the operations of the NamingContext interface:

• binding objects
• name resolution
• unbinding
• creating naming contexts
• deleting contexts
• listing a naming context

3.2.1 Binding Objects

The binding operations name an object in a naming context. Once an object is bound,
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind, rebind, bind_context and rebind_context.

bind
Creates a binding of a name and an object in the naming context. Naming
contexts that are bound using bind do not participate in name resolution when
compound names are passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< c1 ; c2 ; ... ; cn >, obj) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind(< cn >, obj)

rebind
Creates a binding of a name and an object in the naming context even if the
name is already bound in the context. Naming contexts that are bound using
rebind do not participate in name resolution when compound names are
passed to be resolved.

out BindingList bl);
void destroy();

};
};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Figure3-2 The CosNaming Module (Continued)

Naming Service: v1.0 The CosNaming Module March 1995 3-9

3

bind_context
Names an object that is a naming context. Naming contexts that are bound using
bind_context() participate in name resolution when compound names are
passed to be resolved.

A bind_context operation that is passed a compound name is defined as
follows:

ctx->bind_context(< c1 ; c2 ; ... ; cn >, nc) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_context(< cn >, nc)

rebind_context
Creates a binding of a name and a naming context in the naming context even if
the name is already bound in the context. Naming contexts that are bound using
rebind_context() participate in name resolution when compound names are
passed to be resolved.

Table 3-1 describes the exceptions raised by the binding operations.

3.2.2 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrowing”
the object to the appropriate type. That is, clients typically cast the returned object
from Object to a more specialized interface. The OMG IDL definition of the resolve
operation is:

Table 3-1 Exceptions Raised by Binding Operations

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only one
object can be bound to a particular name in a context. The bind and
the bind_context operations raise the AlreadyBound
exception if the name is bound in the context; the rebind and
rebind_context operations unbind the name and rebind the name to
the object passed as an argument.

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

3-10 CORBAservices: Common Object Services Specification

3

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. A compound resolve is defined as follows:

ctx->resolve(< c1 ; c2 ; ... ; cn >) ≡
ctx->resolve(< c1 ; c2 ; ... ; cn-1 >)->resolve(< cn >)

Table 3-2 describes the exceptions raised by the resolve operation.

3.2.3 Unbinding Names

The unbind operation removes a name binding from a context. The definition of the
unbind operation is:

A unbind operation that is passed a compound name is defined as follows:

ctx->unbind(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->unbind(< cn >)

Table 3-3 describes the exceptions raised by the unbind operation.

Table 3-2 Exceptions Raised by Resolve Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

void unbind(in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Table 3-3 Exceptions Raised by Unbind Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

Naming Service: v1.0 The CosNaming Module March 1995 3-11

3

3.2.4 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context and
bind_new_context.

new_context
This operation returns a naming context implemented by the same naming server
as the context on which the operation was invoked. The new context is not
bound to any name.

bind_new_context
This operation creates a new context and binds it to the name supplied as an
argument. The newly-created context is implemented by the same naming server
as the context in which it was bound (that is, the naming server that implements
the context denoted by the name argument excluding the last component).

A bind_new_context that is passed a compound name is defined as follows:

ctx->bind_new_context(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_new_context(< cn >)

Table 3-4 describes the exceptions raised when new contexts are being created.

3.2.5 Deleting Contexts

The destroy operation deletes a naming context:.

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

Table 3-4 Exceptions Raised by Creating New Contexts

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only one
object can be bound to a particular name in a context.

void destroy()
raises(NotEmpty);

3-12 CORBAservices: Common Object Services Specification

3

If the naming context contains bindings, the NotEmpty exception is raised.

3.2.6 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.

The list operation returns at most the requested number of bindings in
BindingList bl.

• If the naming context contains additional bindings, the list operation returns a
BindingIterator with the additional bindings.

• If the naming context does not contain additional bindings, the binding iterator is a
nil object reference.

3.2.7 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using the
next_one or next_n operations:

next_one
This operation returns the next binding. If there are no more bindings, false is
returned.

next_n
This operation returns at most the requested number of bindings.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

Naming Service: v1.0 The Names Library March 1995 3-13

3

destroy
This operation destroys the iterator.

3.3 The Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation of names from client code. Ideally, names
themselves would be objects; however, names must be lightweight entities that are
efficient to create, manipulate, and transmit. As such, names are presented to programs
through the names library.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL (to suggest the appropriate language binding). C and C++
clients2 use the same client language bindings for pseudo-IDL (PIDL) as they use for
IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Section 3.2, “The CosNaming Module,” the naming service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service through the
NamingContext interface.

Note – It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-IDL interfaces: the LNameComponent
interface and the LName interface, as shown in Figure 3-3.

2.As anticipated

3-14 CORBAservices: Common Object Services Specification

3

Figure3-3 The Names Library Interface in PIDL

3.3.1 Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ function:

The returned pseudo-object can then be operated on using the operations in Figure 3-3.

interface LNameComponent { // PIDL
exception NotSet{};
string get_id()

raises(NotSet);
void set_id(in string i);
string get_kind()

raises(NotSet);
void set_kind(in string k);
void destroy();

};

interface LName { // PIDL
exception NoComponent{};
exception OverFlow{};
exception InvalidName{};
LName insert_component(in unsigned long i,

in LNameComponent n)
raises(NoComponent, OverFlow);

LNameComponent get_component(in unsigned long i)
 raises(NoComponent);

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

unsigned long num_components();
boolean equal(in LName ln);
boolean less_than(in LName ln);
Name to_idl_form()

raises(InvalidName);
void from_idl_form(in Name n);
void destroy();

};

LName create_lname(); // C/C++
LNameComponent create_lname_component(); // C/C++

LNameComponent create_lname_component(); // C/C++

Naming Service: v1.0 The Names Library March 1995 3-15

3

3.3.2 Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function.

The returned pseudo-object reference can then be operated on using the operations in
Figure 3-3.

3.3.3 The LNameComponent Interface

A name component consists of two attributes: the identifier attribute and the
kind attribute. The LNameComponent interface defines the operations associated with
these attributes.

get_id
The get_id operation returns the identifier attribute’s value. If the
attribute has not been set, the NotSet exception is raised.

set_id
The set_id operation sets the identifier attribute to the string argument.

get_kind
The get_kind operation returns the kind attribute’s value. If the attribute has
not been set, the NotSet exception is raised.

set_kind
The set_kind operation sets the kind attribute to the string argument.

3.3.4 The LName Interface

The following operations are described in this section:

• destroying a library name component pseudo object

• creating a library name

• inserting a name component

• getting the ith name component

• deleting a name component

• number of name components

LName create_lname(); // C/C++

string get_id()
raises(NotSet);

void set_id(in string k);
string get_kind()

raises(NotSet);
void set_kind(in string k);

3-16 CORBAservices: Common Object Services Specification

3

• testing for equality

• testing for order

• producing an idl form

• translating an idl form

• destroying a library name pseudo object

Destroying a Library Name Component Pseudo Object

The destroy operation destroys library name component pseudo-objects.

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
insert_component operation inserts a component after position i.

If component i-1 is undefined and component i is greater than 1, the
insert_component operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the Overflow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1.

If the component does not exist, the NoComponent exception is raised.

void destroy();

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

Naming Service: v1.0 The Names Library March 1995 3-17

3

Deleting a Name Component

The delete_component operation removes and returns the ith component.

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has
one fewer component and components previously identified as i+1...n are now
identified as i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library
name.

Testing for Equality

The equal operation tests for equality with library name ln.

Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.

This operation returns true if the library name is less than the library name ln passed as
an argument. The library implementation defines the ordering on names.

LNameComponent delete_component(in unsigned long i)
raises(NoComponent);

unsigned long num_components();

boolean equal(in LName ln);

boolean less_than(in LName ln);

3-18 CORBAservices: Common Object Services Specification

3

Producing an IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. Several operations in the NamingContext interface have arguments of an IDL-
defined structure, Name. The following PIDL operation on library names produces a
structure that can be passed across the IDL request.

If the name is of length 0, the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. The NamingContext interface defines operations that return an IDL struct of
type Name. The following PIDL operation on library names sets the components and
kind attribute for a library name from a returned IDL defined structure, Name.

Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects

Name to_idl_form()
raises(InvalidName);

void from_idl_form(in Name n);

void destroy();

